
CODeDOC II

Christiane Paul

As part of the CODE exhibition accompanying this year’s festival, Ars Elec-
tronica invited me to curate a second installment of the online exhibition CODeDOC that
I originally organized for the Whitney Museum of American Art’s artport, a website designed
as a portal to netart. CODeDOC, which launched in September 2002, was conceived
to explore the relationship between the underlying code of software art and its results.
A dozen software artists were invited to code a specific assignment—“connect and move
three points in space”—in a language of their choice (Java, C, Visual Basic, Lingo, Perl)
and were asked to exchange the code with each other for comments. The presentation
strategy of CODeDOC deliberately deviates from the ways in which viewers usually expe-
rience a piece of software art, which commonly presents itself to the audience as executed
code—the results of written instructions. In CODeDOC, the viewing experience is closer
to the artist’s creation process: what the audience encounters first is a page with the
written code, from which they can launch its executed results. Since the assignment
imposed substantial restrictions in format and file size, the contributed projects can’t neces-
sarily be seen as fully developed works; rather, they are comparable to small studies and
sketches that capture an artist’s approach.
Many of the prominent international practitioners in the field of software art could not
participate in the first version of CODeDOC since the Whitney Museum is, by its mission,
devoted to American artists (citizens and artists living and working in the US). CODeDOC
presents a welcome opportunity to close that gap and widen the scope of the project.
The eight artists/teams who were invited to contribute to the second installment and code
the assignment—Ed Burton, epidemiC, Graham Harwood, Jaromil, Annja Krautgasser
& Rainer Mandl, Joan Leandre, Antoine Schmitt and John F. Simon, Jr.—are mostly non-
American. Some other artists who would have been obvious candidates for this project
were not invited because they were already involved in other parts of the Ars Electronica
Festival or exhibition. My special thanks go to Andreas Broeckmann for his input and
suggestions in the selection process of the artists.
From its inception, CODeDOC was intended as a process-oriented experiment rather
than an exhibition meant to make a specific statement or offer a certain point of view.
Ideally, I wanted to raise questions about software art as artistic practice, and neither
the outcome nor the reception of this project were easily predictable for me. One intent
of the project certainly was to demystify the notion of code as a “mysterious,” hidden
driving force and to reveal the code to the viewer. Among the questions that seemed
important to address or clarify were the following: does the term software art itself describe
a certain form of aesthetics? Do “signature,” “voice,” and aesthetics of an artist mani-
fest themselves equally in the written code and its executed results? Will reading the
source code enhance the perception of the work? Does it in fact add anything at all or
just create an emphasis on “technicalities” that is unnecessary, alienating, and obscures
the work? How exactly could one define the relationship between the back end of code
and its results?
The attempt to provide detailed answers to all these questions would be beyond the scope

231CODeDOC II

CODE Exhibition_electrolobby



of this introduction, and I just want to make some general comments and leave it up to
the CODeDOC II projects themselves, as well as the discussions surrounding them, to
offer further perspectives on these issues.
If one explores the body of work that each of the CODeDOC II participants has created
over the years, it seems obvious that the label software art is a lowest common denom-
inator for a formal description of their artistic practice rather than a term that describes
specific aesthetics. The artists’ works themselves cover a broad spectrum of individual
approaches. The works of epidemiC, for example—which include AntiMafia, a Windows-
based program for the co-ordination of associative actions, as well as the infamous bien-
nale.py virus created for the 49th Venice Biennale (in collaboration with
0100101110101101.ORG)—are focused more on activism and the notion of software
as cultural production. Ed Burton’s Sodaplay and Sodaconstructor, which in the mean-
time have achieved cult status, explore the conceptual possibilities of “handcrafted” virtual
robots as well as masses and their kinetic energy. Grahame Harwood’s work has ranged
from “pure” Perl poetry to software creation and narrative projects, such as the CD-ROM
Rehearsal of Memory—which creates its interface out of a collage of the skins of the
inmates and staff of Ashworth Hospital Authority—and the Web project Uncomfortable
Proximity, commissioned by the Tate Museum, which reproduced the Tate website’s layout,
logos, and design, to tell a “different” history of the British art system. Compared to the
former examples, Antoine Schmitt's works are far more visually oriented studies of the
“behaviours” of forms in time and space.
While one might assume that an artist's approach (and perhaps even “personality”) will
manifest itself equally in the written code and its results, the code itself will naturally be
more meaningful to other programmers than a general audience that might only get the
roughest idea of its “mechanisms.” Whether the code adds to an understanding of the
work also varies substantially from case to case. One might speculate that the empha-
sis that the artists themselves would put on the importance of their code partly depends
on the nature of their respective work: for example, artists whose work focuses on “raw”
code (such as many of Graham Harwood’s pieces) might consider the “written part” of
the project more important than artists whose work is an exploration of visual forms, space,
and action (such as many of Antoine Schmitt's projects). The presentation format of CODe-
DOC also seems to have imposed some (unintended) editing on the artists’ part: in their
comments, both Antoine Schmitt (CODeDOC II) and Camille Utterback (CODeDOC I)
admitted that they felt compelled to clean up their code before presenting it to the public
(“I’m one of those people that clean my bathroom if my friends are coming over,” as Camille
put it). One of the inherent dangers and certainly unintended effects of CODeDOC could
be the misassumption that the quality of software art can be judged according to virtu-
osity and craftsmanship in the programming of code (that is, by criteria such as correct-
ness, maintainability, lucidity, and readability, which were outlined by Donald Knuth). One
of the beauties of art, no matter what form and material it takes, consists in the fact that
its success is the result of multiple factors that cannot be objectively defined. A viewer
could certainly enjoy the works of Leonardo da Vinci or Picasso on the basis of their
outstanding virtuosity and craftsmanship alone (although they have much more to offer),
but applying these standards to Duchamp’s urinal or Beuys’ “fat and felt” sculptures will
presumably not yield relevant results or major appreciation. Like any other art form, soft-
ware art cannot and should not be reduced to technical criteria, and the code should
be seen as more than simply the wheels and gears driving the machine.
As an artistic medium and practice, software art seems to distinguish itself from other
art forms such as painting, sculpture or film/video. As opposed to other forms of visual
art, software artists write verbal instructions for their work that can be executed and produce

232 Christiane Paul



233CODeDOC II

anything from visuals to a more abstract communication process (although the execu-
tion of code still requires various steps of interpretation and compiling and the code itself
may be mostly a notation of logic). There is a peculiar relationship between the mostly
hidden backend of code—which constitutes a convergence of language and mathematics—
and the multi-sensory “display” it can produce: an “identity” in the sense of a sameness
in different instances (code results), each of which takes a very different form yet, on
one level, is one and the same. While every art form may be processed and mediated
in one way or another, it usually does not constitute a fusion of fundamentally different
“materialities” (in the broadest sense) as software art does. A painting or sculpture to
a large extent reveals the manifestations of its creation process in the finished object—
for example, in individual brush strokes or materials—even if the art object amounts to
something much larger than the sum of its parts. In software art, the “materiality” of the
written instructions mostly remains hidden. In addition, these instructions and notations
can be instantaneously activated; they contain and—further layers of processing aside—
are the artwork itself. While one might claim that the same holds true for a work of concep-
tual art that consists of written instructions, this work would still have to be activated as
a mental or physical event by the viewer and cannot instantaneously transform, transcend,
and generate its own materiality.
In the comments accompanying his contribution to CODeDOC II, Antoine Schmitt points
out that it would be a misleading shortcut to propose that the language in which a
programmed artwork has been written has anything to do with the “language of
programmed art”—a language relating to the space, time and action of the work. Schmitt
makes an important point in that he hints at the multiple layers of “language” that a discourse
about software art entails: there is the programming language itself (I assume that many
programmers would argue that the choice of the programming language has a substan-
tial effect on the outcome of the artwork); there is the language of the written code in
the sense of an artistic expression that formulates instructions in an individual way (simi-
lar to the use of natural language that, despite a given vocabulary, grammar and rules,
functions as a form of personal expression); and there is the aesthetic “language” of the
code’s actions, comparable to the language of painting or cinema. At best, CODeDOC
can raise some awareness surrounding both the construction and perception of software
art, and I hope that the pieces created for this second round of the project will continue
to contribute to an ongoing dialogue.



CODeDOC I:
http://artport.whitney.org/commissions/CODeDOC/

234 Christiane Paul

CODeDOC II:
http://www.aec.at/CODeDOCII

John F. Simon, Jr. (USA)
http://www.numeral.com 

Annja Krautgasser / Rainer Mandl (A): 
http://www.vidok.org
http://syko.info 

epidemiC (I): 
http://epidemic.ws/ 

Joan Leandre (E) 
http://www.retroyou.org/

Jaromil (A/I) 
http://korova.dyne.org/ 

Ed Burton (UK) 
http://soda.co.uk/

Antoine Schmitt (F) 
http://www.gratin.org/as/ 

ep
id

em
iC

A
nt

oi
ne

 S
ch

m
itt

Jo
hn

 F
. 

S
im

on




